Grothendieck C(K)-spaces of small density

Damian Sobota

Technische Universität Wien, Austria

Winter School, Hejnice 2018

X — an infinite-dimensional Banach space

X — an infinite-dimensional Banach space

 X^* — the *dual* space of X = the Banach space of all continuous linear functionals on X

X — an infinite-dimensional Banach space

 X^* — the *dual* space of X = the Banach space of all continuous linear functionals on X

 X^{**} — the *bidual* space of X = the dual space of X^*

X — an infinite-dimensional Banach space

 X^* — the *dual* space of X = the Banach space of all continuous linear functionals on X

 X^{**} — the *bidual* space of X = the dual space of X^*

Fact If $x \in X$, then the evaluation $ev_x \colon X^* \to \mathbb{R}$, where $ev_x(x^*) = x^*(x)$ for every $x^* \in X^*$, is in X^{**} .

X — an infinite-dimensional Banach space

 X^* — the *dual* space of X = the Banach space of all continuous linear functionals on X

 X^{**} — the *bidual* space of X = the dual space of X^*

X — an infinite-dimensional Banach space

 X^* — the *dual* space of X = the Banach space of all continuous linear functionals on X

 X^{**} — the *bidual* space of X = the dual space of X^*

Weak topologies on X^*

• weak topology on X^* = the smallest topology such that every $x^{**} \in X^{**}$ is continuous;

X — an infinite-dimensional Banach space

 X^* — the *dual* space of X = the Banach space of all continuous linear functionals on X

 X^{**} — the *bidual* space of X = the dual space of X^*

Weak topologies on X^*

- weak topology on X^* = the smallest topology such that every $x^{**} \in X^{**}$ is continuous;
- weak* topology on X* = the smallest topology such that every ev_x is continuous;

Inclusions of the weak topologies on X^*

$$weak^* \subseteq weak \subseteq norm$$

Question

Is always a weak* convergent sequence $\left\langle x_n^*\in X^*\colon n\in\omega\right\rangle$ weakly convergent?

Inclusions of the weak topologies on X^*

$$weak^* \subseteq weak \subseteq norm$$

Question

Is always a weak* convergent sequence $\left\langle x_n^*\in X^*\colon n\in\omega\right\rangle$ weakly convergent?

Definition

An infinite dimensional Banach space X is *Grothendieck* if every weak* convergent sequence in the dual X^* is weakly convergent.

Examples of Grothendieck spaces

 \bullet reflexive spaces, so all ℓ_p for 1

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_{∞} (Grothendieck '53)

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_∞ (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_∞ (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- C(St(A)) where A is a σ-complete Boolean algebras (Grothendieck '53)

Examples of Grothendieck spaces

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- C(St(A)) where A is a σ-complete Boolean algebras (Grothendieck '53)

Examples of non-Grothendieck spaces

• ℓ_1 and c_0

Examples of Grothendieck spaces

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- C(St(A)) where A is a σ-complete Boolean algebras (Grothendieck '53)

- ℓ_1 and c_0
- separable C(K)-spaces, e.g. C([0,1]) or $C(2^{\omega})$

Examples of Grothendieck spaces

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- C(St(A)) where A is a σ-complete Boolean algebras (Grothendieck '53)

- ℓ_1 and c_0
- separable C(K)-spaces, e.g. C([0,1]) or $C(2^{\omega})$
- C(K) provided that K has a non-trivial convergent sequence

Examples of Grothendieck spaces

- \bullet reflexive spaces, so all ℓ_p for 1
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- C(St(A)) where A is a σ-complete Boolean algebras (Grothendieck '53)

- ℓ_1 and c_0
- separable C(K)-spaces, e.g. C([0,1]) or $C(2^{\omega})$
- C(K) provided that K has a non-trivial convergent sequence
- C(K) such that $C(K) = c_0 \oplus Y$ for some closed subspace Y

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Examples

• σ -complete algebras

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Examples

- σ -complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Examples

- $\bullet \ \sigma\text{-complete}$ algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Examples

- σ -complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Non-examples

• \mathcal{A} such that $St(\mathcal{A})$ has a non-trivial convergent sequence

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Examples

- σ -complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Non-examples

- \mathcal{A} such that $St(\mathcal{A})$ has a non-trivial convergent sequence
- so countable Boolean algebras

Definition

A Boolean algebra A has the Grothendieck property if the space C(St(A)) is a Grothendieck space.

Examples

- σ -complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Non-examples

- \mathcal{A} such that $St(\mathcal{A})$ has a non-trivial convergent sequence
- so countable Boolean algebras
- algebra ${\mathcal J}$ of Jordan-measurable subsets of [0,1]

The Grothendieck number \mathfrak{gr}

 $\mathfrak{gr} = \min \{ |\mathcal{A}| : \text{ infinite } \mathcal{A} \text{ has the Grothendieck property} \}$

 $\omega_1 \leqslant \mathfrak{gr} \leqslant \mathfrak{c}$

The Grothendieck number \mathfrak{gr}

 $\mathfrak{gr} = \min \{ |\mathcal{A}| : \text{ infinite } \mathcal{A} \text{ has the Grothendieck property} \}$

 $\omega_1 \leqslant \mathfrak{gr} \leqslant \mathfrak{c}$

Problem

Describe $\mathfrak{g}\mathfrak{r}$ in terms of classical cardinal characteristics of the continuum.

Theorem (Booth '74)

If $w(K) < \mathfrak{s}$, then K is sequentially compact.

Theorem (Booth '74)

If $w(K) < \mathfrak{s}$, then K is sequentially compact.

Theorem (Geschke '06)

If $w(K) < cov(\mathcal{M})$, then either K is scattered or there exists a perfect subset $L \subseteq K$ with a \mathbb{G}_{δ} -point $x \in L$.

Theorem (Booth '74)

If $w(K) < \mathfrak{s}$, then K is sequentially compact.

Theorem (Geschke '06)

If $w(K) < cov(\mathcal{M})$, then either K is scattered or there exists a perfect subset $L \subseteq K$ with a \mathbb{G}_{δ} -point $x \in L$.

Recall that: $|\mathcal{A}| = w(St(\mathcal{A})).$

Corollary

If $|\mathcal{A}| < \max(\mathfrak{s}, \operatorname{cov}(\mathcal{M}))$, then \mathcal{A} does not have the Grothendieck property. Hence, $\mathfrak{gr} \ge \max(\mathfrak{s}, \operatorname{cov}(\mathcal{M}))$.

Theorem (Brech '06)

Let κ be a regular cardinal number and \mathbb{S}^{κ} denote the side-by-side Sacks forcing.

Theorem (Brech '06)

Let κ be a regular cardinal number and \mathbb{S}^{κ} denote the side-by-side Sacks forcing. Then, if \mathcal{A} is a σ -complete Boolean algebra in a ground model V and G is a \mathbb{S}^{κ} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Theorem (Brech '06)

Let κ be a regular cardinal number and \mathbb{S}^{κ} denote the side-by-side Sacks forcing. Then, if \mathcal{A} is a σ -complete Boolean algebra in a ground model V and G is a \mathbb{S}^{κ} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Corollary

If CH holds in V and G is a \mathbb{S}^{κ} -generic filter over V, then $\mathfrak{gr} = \omega_1 < \kappa = \mathfrak{c}$ holds in V[G].

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq * f$, there exists $H \colon \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq f$, there exists $H: \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq f$, there exists $H: \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ preserves the ground model reals non-meager if $\mathbb{R} \cap V$ is a non-meager subset of $\mathbb{R} \cap V[G]$ for any \mathbb{P} -generic filter G.

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq f$, there exists $H: \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ preserves the ground model reals non-meager if $\mathbb{R} \cap V$ is a non-meager subset of $\mathbb{R} \cap V[G]$ for any \mathbb{P} -generic filter G.

Examples: Sacks, side-by-side Sacks, Miller, Silver(-like)

Theorem (S.–Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager.

Theorem (S.–Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ -complete Boolean algebra in V and G is a \mathbb{P} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Generalization

Theorem (S.–Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ -complete Boolean algebra in V and G is a \mathbb{P} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Corollary

() in the Miller model:
$$\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{d} = \mathfrak{g} = \mathfrak{c}$$

Generalization

Theorem (S.–Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ -complete Boolean algebra in V and G is a \mathbb{P} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Corollary

- **1** in the Miller model: $\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{d} = \mathfrak{g} = \mathfrak{c}$
- 2 in the Silver model: $\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{r} = \mathfrak{u} = \mathfrak{c}$

Generalization

Theorem (S.–Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ -complete Boolean algebra in V and G is a \mathbb{P} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Corollary

1 in the Miller model: $\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{d} = \mathfrak{g} = \mathfrak{c}$

2) in the Silver model:
$$\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{r} = \mathfrak{u} = \mathfrak{c}$$

Recall that:
$$\mathsf{Con}(\mathfrak{r} = \mathfrak{u} < \mathfrak{s})$$
 and $\mathsf{Con}(\mathfrak{g} < \mathsf{cov}(\mathcal{M}))$

Corollary

No ZFC inequality between \mathfrak{gr} and any of the numbers \mathfrak{r} , \mathfrak{u} and \mathfrak{g} .

Theorem (S.–Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ -complete Boolean algebra in V and G is a \mathbb{P} -generic filter over V, then \mathcal{A} has the Grothendieck property in V[G].

Corollary

1 in the Miller model: $\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{d} = \mathfrak{g} = \mathfrak{c}$

2) in the Silver model:
$$\mathfrak{gr} = \omega_1 < \omega_2 = \mathfrak{r} = \mathfrak{u} = \mathfrak{c}$$

Recall that:
$$\mathsf{Con}(\mathfrak{r} = \mathfrak{u} < \mathfrak{s})$$
 and $\mathsf{Con}(\mathfrak{g} < \mathsf{cov}(\mathcal{M}))$

Corollary

No ZFC inequality between \mathfrak{gr} and any of the numbers \mathfrak{r} , \mathfrak{u} and \mathfrak{g} .

Question

 $\mathsf{Con}(\mathfrak{d} < \mathfrak{gr})?$

If κ is a cardinal number such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa \ge \operatorname{cof}(\mathcal{N})$,

If κ is a cardinal number such that $cof([\kappa]^{\omega}) = \kappa \ge cof(\mathcal{N})$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ .

If κ is a cardinal number such that $cof([\kappa]^{\omega}) = \kappa \ge cof(\mathcal{N})$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ .

Corollary

If
$$\operatorname{cof}([\operatorname{cof}(\mathcal{N})]^{\omega}) = \operatorname{cof}(\mathcal{N})$$
, then $\mathfrak{gr} \leqslant \operatorname{cof}(\mathcal{N})$.

If κ is a cardinal number such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa \ge \operatorname{cof}(\mathcal{N})$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ .

Corollary

If
$$\operatorname{cof}([\operatorname{cof}(\mathcal{N})]^{\omega}) = \operatorname{cof}(\mathcal{N})$$
, then $\mathfrak{gr} \leqslant \operatorname{cof}(\mathcal{N})$.

Recall that $Con(\omega_2 = cof(\mathcal{N}) < \mathfrak{a} = \omega_3)$ (Brendle '03).

Corollary

No ZFC inequality between \mathfrak{gr} and \mathfrak{a} .

What's known:

What's known:

 $\ \, {\mathfrak g}{\mathfrak r} \geqslant {\rm cov}({\mathcal M}) \ {\rm and} \ {\rm Con}({\rm cov}({\mathcal M})>{\rm non}({\mathcal M}))$

What's known:

 $\ \, \mathfrak{gr} \geqslant \mathsf{cov}(\mathcal{M}) \text{ and } \mathsf{Con}(\mathsf{cov}(\mathcal{M}) > \mathsf{non}(\mathcal{M}))$

2
$$\mathfrak{gr} \geqslant \mathfrak{s}$$
 and $\mathsf{Con}(\mathfrak{s} > \mathsf{cov}(\mathcal{M}))$

What's known:

- $\ \, \mathfrak{gr} \geqslant \mathsf{cov}(\mathcal{M}) \text{ and } \mathsf{Con}(\mathsf{cov}(\mathcal{M}) > \mathsf{non}(\mathcal{M}))$
- $\ \, \mathfrak{gr} \geqslant \mathfrak{s} \text{ and } \mathsf{Con}(\mathfrak{s} > \mathsf{cov}(\mathcal{M}))$
- Con $(\mathfrak{gr} < \mathfrak{d})$

• Con(non(
$$\mathcal{N}$$
) < \mathfrak{gr})?

- Con(non(\mathcal{N}) < \mathfrak{gr})?
- **2** $\mathfrak{b} \leq \mathfrak{gr}$? (the Laver model?)

- Con(non(\mathcal{N}) < \mathfrak{gr})?
- **2** $\mathfrak{b} \leq \mathfrak{gr}$? (the Laver model?)
- Son $(\mathfrak{gr} < \operatorname{cov}(\mathcal{N}))$? (the random model?)

What's known:

What's known:

 No ZFC ineq. between gr and r, u, g and a

What's known:

- No ZFC ineq. between gr and r, u, g and a
- $cov(\mathcal{M}) \leq \mathfrak{gr} and$ $Con(\mathfrak{s} < cov(\mathcal{M}))$

Van Douwen's diagram and $\mathfrak{g}\mathfrak{r}$

What's known:

- No ZFC ineq. between gr and r, u, g and a
- ② $cov(\mathcal{M}) \leq \mathfrak{gr}$ and $Con(\mathfrak{s} < cov(\mathcal{M}))$
- Con $(\mathfrak{gr} < \mathfrak{d})$

What's known:

- No ZFC ineq. between gr and r, u, g and a
- $cov(\mathcal{M}) \leq \mathfrak{gr} and$ $Con(\mathfrak{s} < cov(\mathcal{M}))$

$$on(\mathfrak{gr} < \mathfrak{d})$$

 \P $\mathfrak{s} \leq \mathfrak{gr}$

What's known:

- No ZFC ineq. between gr and r, u, g and a
- $\begin{array}{l} { @ } \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{gr} \text{ and} \\ \operatorname{Con}(\mathfrak{s} < \operatorname{cov}(\mathcal{M})) \end{array} \end{array}$
- Con $(\mathfrak{gr} < \mathfrak{d})$
- \P s \leq gr

- 2 $\mathfrak{gr} \leqslant \mathfrak{d}?$

Theorem (Schachermayer '82)

 $cf(\mathfrak{gr}) > \omega.$

Theorem (Schachermayer '82)

 $cf(\mathfrak{gr}) > \omega.$

Fact

 \mathfrak{gt} may be either regular (CH) or singular (in every model where $\mathsf{cov}(\mathcal{M}) = \mathfrak{c} > \mathsf{cf}(\mathfrak{c})).$

Thank you for the attention!