Grothendieck $C(K)$-spaces of small density

Damian Sobota

Technische Universität Wien, Austria
Winter School, Hejnice 2018

Weak topologies

X - an infinite-dimensional Banach space

Weak topologies

X - an infinite-dimensional Banach space
X^{*} - the dual space of $X=$ the Banach space of all continuous linear functionals on X

Weak topologies

X - an infinite-dimensional Banach space
X^{*} - the dual space of $X=$ the Banach space of all continuous linear functionals on X
$X^{* *}$ - the bidual space of $X=$ the dual space of X^{*}

Weak topologies

X — an infinite-dimensional Banach space
X^{*} - the dual space of $X=$ the Banach space of all continuous linear functionals on X
$X^{* *}$ — the bidual space of $X=$ the dual space of X^{*}

Fact

(1) If $x \in X$, then the evaluation $e v_{x}: X^{*} \rightarrow \mathbb{R}$, where $e v_{x}\left(x^{*}\right)=x^{*}(x)$ for every $x^{*} \in X^{*}$, is in $X^{* *}$.

Weak topologies

X - an infinite-dimensional Banach space
X^{*} - the dual space of $X=$ the Banach space of all continuous linear functionals on X
$X^{* *}$ — the bidual space of $X=$ the dual space of X^{*}

Fact

(1) If $x \in X$, then the evaluation $e v_{x}: X^{*} \rightarrow \mathbb{R}$, where $e v_{x}\left(x^{*}\right)=x^{*}(x)$ for every $x^{*} \in X^{*}$, is in $X^{* *}$.
(2) $X \ni x \mapsto e v_{x} \in X^{* *}$ - isometric embedding of X into $X^{* *}$.

Weak topologies

X — an infinite-dimensional Banach space
X^{*} - the dual space of $X=$ the Banach space of all continuous linear functionals on X
$X^{* *}$ - the bidual space of $X=$ the dual space of X^{*}

Fact

(1) If $x \in X$, then the evaluation $e v_{x}: X^{*} \rightarrow \mathbb{R}$, where $e v_{x}\left(x^{*}\right)=x^{*}(x)$ for every $x^{*} \in X^{*}$, is in $X^{* *}$.
(2) $X \ni x \mapsto e v_{x} \in X^{* *}$ - isometric embedding of X into $X^{* *}$.

Weak topologies on X^{*}

- weak topology on $X^{*}=$ the smallest topology such that every $x^{* *} \in X^{* *}$ is continuous;

Weak topologies

X - an infinite-dimensional Banach space
X^{*} - the dual space of $X=$ the Banach space of all continuous linear functionals on X
$X^{* *}$ - the bidual space of $X=$ the dual space of X^{*}

Fact

(1) If $x \in X$, then the evaluation $e v_{x}: X^{*} \rightarrow \mathbb{R}$, where $e v_{x}\left(x^{*}\right)=x^{*}(x)$ for every $x^{*} \in X^{*}$, is in $X^{* *}$.
(2) $X \ni x \mapsto e v_{x} \in X^{* *}$ - isometric embedding of X into $X^{* *}$.

Weak topologies on X^{*}

- weak topology on $X^{*}=$ the smallest topology such that every $x^{* *} \in X^{* *}$ is continuous;
- weak* topology on $X^{*}=$ the smallest topology such that every $e v_{x}$ is continuous;

Grothendieck spaces

Inclusions of the weak topologies on X^{*}

$$
\text { weak }^{*} \subseteq \text { weak } \subseteq \text { norm }
$$

Question

Is always a weak* convergent sequence $\left\langle x_{n}^{*} \in X^{*}: n \in \omega\right\rangle$ weakly convergent?

Grothendieck spaces

Inclusions of the weak topologies on X^{*}

$$
\text { weak }^{*} \subseteq \text { weak } \subseteq \text { norm }
$$

Question

Is always a weak* convergent sequence $\left\langle x_{n}^{*} \in X^{*}: n \in \omega\right\rangle$ weakly convergent?

Definition

An infinite dimensional Banach space X is Grothendieck if every weak* convergent sequence in the dual X^{*} is weakly convergent.

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- $C(\operatorname{St}(\mathcal{A}))$ where \mathcal{A} is a σ-complete Boolean algebras (Grothendieck '53)

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- $C(S t(\mathcal{A}))$ where \mathcal{A} is a σ-complete Boolean algebras (Grothendieck '53)

Examples of non-Grothendieck spaces

- ℓ_{1} and c_{0}

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- $C(S t(\mathcal{A}))$ where \mathcal{A} is a σ-complete Boolean algebras (Grothendieck '53)

Examples of non-Grothendieck spaces

- ℓ_{1} and c_{0}
- separable $C(K)$-spaces, e.g. $C([0,1])$ or $C\left(2^{\omega}\right)$

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- $C(S t(\mathcal{A}))$ where \mathcal{A} is a σ-complete Boolean algebras (Grothendieck '53)

Examples of non-Grothendieck spaces

- ℓ_{1} and c_{0}
- separable $C(K)$-spaces, e.g. $C([0,1])$ or $C\left(2^{\omega}\right)$
- $C(K)$ provided that K has a non-trivial convergent sequence

Grothendieck spaces

Examples of Grothendieck spaces

- reflexive spaces, so all ℓ_{p} for $1<p<\infty$
- ℓ_{∞} (Grothendieck '53)
- the space H^{∞} of bounded analytic functions on the unit disc (Bourgain '83)
- von Neumann algebras (Pfitzner '94)
- $C(\operatorname{St}(\mathcal{A}))$ where \mathcal{A} is a σ-complete Boolean algebras (Grothendieck '53)

Examples of non-Grothendieck spaces

- ℓ_{1} and c_{0}
- separable $C(K)$-spaces, e.g. $C([0,1])$ or $C\left(2^{\omega}\right)$
- $C(K)$ provided that K has a non-trivial convergent sequence
- $C(K)$ such that $C(K)=c_{0} \oplus Y$ for some closed subspace Y

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

Examples

- σ-complete algebras

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

Examples

- σ-complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

Examples

- σ-complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

Examples

- σ-complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Non-examples

- \mathcal{A} such that $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

Examples

- σ-complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Non-examples

- \mathcal{A} such that $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence
- so countable Boolean algebras

The Grothendieck property

Definition

A Boolean algebra \mathcal{A} has the Grothendieck property if the space $C(S t(\mathcal{A}))$ is a Grothendieck space.

Examples

- σ-complete algebras
- algebras with Haydon's Subsequential Completeness Property (SCP)
- algebras with Schachermayer's property (E), Seever's property (I), Moltó's property (f)...

Non-examples

- \mathcal{A} such that $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence
- so countable Boolean algebras
- algebra \mathcal{J} of Jordan-measurable subsets of $[0,1]$

The Grothendieck number

The Grothendieck number $\mathfrak{g r}$

$\mathfrak{g r}=\min \{|\mathcal{A}|:$ infinite \mathcal{A} has the Grothendieck property $\}$

$$
\omega_{1} \leqslant \mathfrak{g r} \leqslant \mathfrak{c}
$$

The Grothendieck number

The Grothendieck number $\mathfrak{g r}$
$\mathfrak{g r}=\min \{|\mathcal{A}|:$ infinite \mathcal{A} has the Grothendieck property $\}$

$$
\omega_{1} \leqslant \mathfrak{g r} \leqslant \mathfrak{c}
$$

Problem

Describe $\mathfrak{g r}$ in terms of classical cardinal characteristics of the continuum.

ZFC lower bounds

If $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence, then \mathcal{A} does not have the Grothendieck property.

ZFC lower bounds

If $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence, then \mathcal{A} does not have the Grothendieck property.

Theorem (Booth '74)
If $w(K)<\mathfrak{s}$, then K is sequentially compact.

ZFC lower bounds

If $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence, then \mathcal{A} does not have the Grothendieck property.

Theorem (Booth '74)

If $w(K)<\mathfrak{s}$, then K is sequentially compact.

Theorem (Geschke '06)

If $w(K)<\operatorname{cov}(\mathcal{M})$, then either K is scattered or there exists a perfect subset $L \subseteq K$ with a \mathbb{G}_{δ}-point $x \in L$.

ZFC lower bounds

If $\operatorname{St}(\mathcal{A})$ has a non-trivial convergent sequence, then \mathcal{A} does not have the Grothendieck property.

Theorem (Booth '74)

If $w(K)<\mathfrak{s}$, then K is sequentially compact.

Theorem (Geschke '06)

If $w(K)<\operatorname{cov}(\mathcal{M})$, then either K is scattered or there exists a perfect subset $L \subseteq K$ with a \mathbb{G}_{δ}-point $x \in L$.

Recall that: $|\mathcal{A}|=w(S t(\mathcal{A}))$.

Corollary

If $|\mathcal{A}|<\max (\mathfrak{s}, \operatorname{cov}(\mathcal{M}))$, then \mathcal{A} does not have the Grothendieck property. Hence, $\mathfrak{g r} \geqslant \max (\mathfrak{s}, \operatorname{cov}(\mathcal{M}))$.

$\operatorname{Con}(\mathfrak{g r}<\mathfrak{c})$

Theorem (Brech '06)

Let κ be a regular cardinal number and \mathbb{S}^{κ} denote the side-by-side Sacks forcing.

$\operatorname{Con}(\mathfrak{g r}<\mathfrak{c})$

Theorem (Brech '06)

Let κ be a regular cardinal number and \mathbb{S}^{κ} denote the side-by-side Sacks forcing. Then, if \mathcal{A} is a σ-complete Boolean algebra in a ground model V and G is a \mathbb{S}^{κ}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

$\operatorname{Con}(\mathfrak{g r}<\mathfrak{c})$

Theorem (Brech '06)

Let κ be a regular cardinal number and \mathbb{S}^{κ} denote the side-by-side Sacks forcing. Then, if \mathcal{A} is a σ-complete Boolean algebra in a ground model V and G is a \mathbb{S}^{κ}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

Corollary

If CH holds in V and G is a \mathbb{S}^{κ}-generic filter over V, then $\mathfrak{g r}=\omega_{1}<\kappa=\mathfrak{c}$ holds in $V[G]$.

Generalization

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P}-generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leqslant^{*} f$, there exists $H: \omega \rightarrow[\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leqslant n+1$ for every $n \in \omega$.

Generalization

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P}-generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leqslant^{*} f$, there exists $H: \omega \rightarrow[\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leqslant n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Generalization

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P}-generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leqslant^{*} f$, there exists $H: \omega \rightarrow[\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leqslant n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ preserves the ground model reals non-meager if $\mathbb{R} \cap V$ is a non-meager subset of $\mathbb{R} \cap V[G]$ for any \mathbb{P}-generic filter G.

Generalization

Definition

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P}-generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leqslant^{*} f$, there exists $H: \omega \rightarrow[\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leqslant n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ preserves the ground model reals non-meager if $\mathbb{R} \cap V$ is a non-meager subset of $\mathbb{R} \cap V[G]$ for any \mathbb{P}-generic filter G.

Examples: Sacks, side-by-side Sacks, Miller, Silver(-like)

Generalization

Theorem (S.-Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager.

Generalization

Theorem (S.-Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ-complete Boolean algebra in V and G is a \mathbb{P}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

Generalization

Theorem (S.-Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ-complete Boolean algebra in V and G is a \mathbb{P}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

Corollary

(1) in the Miller model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{d}=\mathfrak{g}=\mathfrak{c}$

Generalization

Theorem (S.-Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ-complete Boolean algebra in V and G is a \mathbb{P}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

Corollary

(1) in the Miller model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{d}=\mathfrak{g}=\mathfrak{c}$
(2) in the Silver model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{r}=\mathfrak{u}=\mathfrak{c}$

Generalization

Theorem (S.-Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ-complete Boolean algebra in V and G is a \mathbb{P}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

Corollary

(1) in the Miller model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{d}=\mathfrak{g}=\mathfrak{c}$
(2) in the Silver model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{r}=\mathfrak{u}=\mathfrak{c}$

Recall that: $\operatorname{Con}(\mathfrak{r}=\mathfrak{u}<\mathfrak{s})$ and $\operatorname{Con}(\mathfrak{g}<\operatorname{cov}(\mathcal{M}))$
Corollary
No ZFC inequality between $\mathfrak{g r}$ and any of the numbers $\mathfrak{r}, \mathfrak{u}$ and \mathfrak{g}.

Generalization

Theorem (S.-Zdomskyy '17)

Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, if \mathcal{A} is a σ-complete Boolean algebra in V and G is a \mathbb{P}-generic filter over V, then \mathcal{A} has the Grothendieck property in $V[G]$.

Corollary

(1) in the Miller model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{d}=\mathfrak{g}=\mathfrak{c}$
(2) in the Silver model: $\mathfrak{g r}=\omega_{1}<\omega_{2}=\mathfrak{r}=\mathfrak{u}=\mathfrak{c}$

Recall that: $\operatorname{Con}(\mathfrak{r}=\mathfrak{u}<\mathfrak{s})$ and $\operatorname{Con}(\mathfrak{g}<\operatorname{cov}(\mathcal{M}))$
Corollary
No ZFC inequality between $\mathfrak{g r}$ and any of the numbers $\mathfrak{r}, \mathfrak{u}$ and \mathfrak{g}.
Question
$\operatorname{Con}(\mathfrak{d}<\mathfrak{g r}) ?$

A ZFC upper bound

Theorem (S. '18)

If κ is a cardinal number such that $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa \geqslant \operatorname{cof}(\mathcal{N})$,

A ZFC upper bound

Theorem (S. '18)
If κ is a cardinal number such that $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa \geqslant \operatorname{cof}(\mathcal{N})$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ.

A ZFC upper bound

Theorem (S. '18)

If κ is a cardinal number such that $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa \geqslant \operatorname{cof}(\mathcal{N})$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ.

Corollary

If $\operatorname{cof}\left([\operatorname{cof}(\mathcal{N})]^{\omega}\right)=\operatorname{cof}(\mathcal{N})$, then $\mathfrak{g r} \leqslant \operatorname{cof}(\mathcal{N})$.

A ZFC upper bound

Theorem (S. '18)

If κ is a cardinal number such that $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa \geqslant \operatorname{cof}(\mathcal{N})$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ.

Corollary

If $\operatorname{cof}\left([\operatorname{cof}(\mathcal{N})]^{\omega}\right)=\operatorname{cof}(\mathcal{N})$, then $\mathfrak{g r} \leqslant \operatorname{cof}(\mathcal{N})$.
Recall that $\operatorname{Con}\left(\omega_{2}=\operatorname{cof}(\mathcal{N})<\mathfrak{a}=\omega_{3}\right)$ (Brendle '03).

Corollary

No ZFC inequality between $\mathfrak{g r}$ and \mathfrak{a}.

Cichon's diagram and $\mathfrak{g r}$

What's known:

Cichon's diagram and $\mathfrak{g r}$

What's known:
(1) $\mathfrak{g r} \geqslant \operatorname{cov}(\mathcal{M})$ and $\operatorname{Con}(\operatorname{cov}(\mathcal{M})>\operatorname{non}(\mathcal{M}))$

Cichon's diagram and $\mathfrak{g r}$

What's known:
(1) $\mathfrak{g r} \geqslant \operatorname{cov}(\mathcal{M})$ and $\operatorname{Con}(\operatorname{cov}(\mathcal{M})>\operatorname{non}(\mathcal{M}))$
(2) $\mathfrak{g r} \geqslant \mathfrak{s}$ and $\operatorname{Con}(\mathfrak{s}>\operatorname{cov}(\mathcal{M}))$

Cichon's diagram and $\mathfrak{g r}$

What's known:
(1) $\mathfrak{g r} \geqslant \operatorname{cov}(\mathcal{M})$ and $\operatorname{Con}(\operatorname{cov}(\mathcal{M})>\operatorname{non}(\mathcal{M}))$
(2) $\mathfrak{g r} \geqslant \mathfrak{s}$ and $\operatorname{Con}(\mathfrak{s}>\operatorname{cov}(\mathcal{M}))$
(3) $\operatorname{Con}(\mathfrak{g r}<\mathfrak{d})$

Cichon's diagram and $\mathfrak{g r}$

Questions:
(1) Con $(\operatorname{non}(\mathcal{N})<\mathfrak{g r})$?

Cichon's diagram and $\mathfrak{g r}$

Questions:
(1) Con $(\operatorname{non}(\mathcal{N})<\mathfrak{g r})$?
(2) $\mathfrak{b} \leqslant \mathfrak{g r}$? (the Laver model?)

Cichon's diagram and $\mathfrak{g r}$

Questions:
(1) Con $(\operatorname{non}(\mathcal{N})<\mathfrak{g r})$?
(2) $\mathfrak{b} \leqslant \mathfrak{g r}$? (the Laver model?)
(3) $\operatorname{Con}(\mathfrak{g r}<\operatorname{cov}(\mathcal{N}))$? (the random model?)

Van Douwen's diagram and $\mathfrak{g r}$

What's known:

Van Douwen's diagram and $\mathfrak{g r}$

What's known:

(1) No ZFC ineq. between $\mathfrak{g r}$ and $\mathfrak{r}, \mathfrak{u}, \mathfrak{g}$ and \mathfrak{a}

Van Douwen's diagram and $\mathfrak{g r}$

What's known:

(1) No ZFC ineq. between $\mathfrak{g r}$ and $\mathfrak{r}, \mathfrak{u}, \mathfrak{g}$ and \mathfrak{a}
(2) $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{g r}$ and
$\operatorname{Con}(\mathfrak{s}<\operatorname{cov}(\mathcal{M}))$

Van Douwen's diagram and $\mathfrak{g r}$

What's known:

(1) No ZFC ineq. between $\mathfrak{g r}$ and $\mathfrak{r}, \mathfrak{u}, \mathfrak{g}$ and \mathfrak{a}
(2) $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{g r}$ and $\operatorname{Con}(\mathfrak{s}<\operatorname{cov}(\mathcal{M}))$
(3) $\operatorname{Con}(\mathfrak{g r}<\mathfrak{d})$

Van Douwen's diagram and $\mathfrak{g r}$

What's known:

(1) No ZFC ineq. between $\mathfrak{g r}$ and $\mathfrak{r}, \mathfrak{u}, \mathfrak{g}$ and \mathfrak{a}
(2) $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{g r}$ and $\operatorname{Con}(\mathfrak{s}<\operatorname{cov}(\mathcal{M}))$
(3) $\operatorname{Con}(\mathfrak{g r}<\mathfrak{d})$
(3) $\mathfrak{s} \leqslant \mathfrak{g r}$

Van Douwen's diagram and $\mathfrak{g r}$

What's known:
(1) No ZFC ineq. between $\mathfrak{g r}$ and $\mathfrak{r}, \mathfrak{u}, \mathfrak{g}$ and \mathfrak{a}
(2) $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{g r}$ and $\operatorname{Con}(\mathfrak{s}<\operatorname{cov}(\mathcal{M}))$
(3) $\operatorname{Con}(\mathfrak{g r}<\mathfrak{d})$
($3 \leqslant \mathfrak{g r}$
Questions:
(1) $\mathfrak{b} \leqslant \mathfrak{g r}$?
(2) $\mathfrak{g r} \leqslant \mathfrak{d}$?

A word on the cofinality of $\mathfrak{g r}$

Theorem (Schachermayer '82) $\operatorname{cf}(\mathfrak{g r})>\omega$.

A word on the cofinality of $\mathfrak{g r}$

Theorem (Schachermayer '82)
$\operatorname{cf}(\mathfrak{g r})>\omega$.

Fact

$\mathfrak{g r}$ may be either regular (CH) or singular (in every model where $\operatorname{cov}(\mathcal{M})=\mathfrak{c}>\operatorname{cf}(\mathfrak{c}))$.

The end

Thank you for the attention!

